Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2011 / 22 VAR forecasting using Bayesian variable selection

This paper develops methods for automatic selection of variables in Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic linear and nonlinear models, as well as models of large dimensions. The performance of the proposed variable selection method is assessed in forecasting three...

متن کامل

Bayesian Variable Selection via Particle Stochastic Search.

We focus on Bayesian variable selection in regression models. One challenge is to search the huge model space adequately, while identifying high posterior probability regions. In the past decades, the main focus has been on the use of Markov chain Monte Carlo (MCMC) algorithms for these purposes. In this article, we propose a new computational approach based on sequential Monte Carlo (SMC), whi...

متن کامل

Bayesian Stochastic Search for VAR Model Restrictions

We propose a Bayesian stochastic search approach to selecting restrictions for Vector Autoregressive (VAR) models. For this purpose, we develop a Markov Chain Monte Carlo (MCMC) algorithm that visits high posterior probability restrictions on the elements of both the VAR regression coefficients and the error variance matrix. Numerical simulations show that stochastic search based on this algori...

متن کامل

Stochastic matching pursuit for Bayesian variable selection

This article proposes a stochastic version of the matching pursuit algorithm for Bayesian variable selection in linear regression. In the Bayesian formulation, the prior distribution of each regression coefficient is assumed to be a mixture of a point mass at 0 and a normal distribution with zero mean and a large variance. The proposed stochastic matching pursuit algorithm is designed for sampl...

متن کامل

Forecasting Long Memory Processes Subject to Structural Breaks

We develop an easy-to-implement method for forecasting a stationary autoregressive fractionally integrated moving average (ARFIMA) process subject to structural breaks with unknown break dates. We show that an ARFIMA process subject to a mean shift and a change in the long memory parameter can be well approximated by an autoregressive (AR) model and suggest using an information criterion (AIC o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Forecasting

سال: 2010

ISSN: 0169-2070

DOI: 10.1016/j.ijforecast.2009.11.002